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Last Time

e Adversarial Inputs
e Generative Adversarial Networks < example of unsupervised learning



This Time

Unsupervised Learning

e Taxonomy
e Generative models
e Quantifying performance

Two new kinds of generative models

e Normalizing flows — next time
e Variational autoencoders



Supervised Learning

Any time that

e \We are provided input/output pairs
e And asked to build a model generalizing them

Unsupervised learning

e Everything else? Not quite.

e Self/semi-supervised learning used inconsistently.
o Sometimes partially supervised.
o Sometimes deriving targets for unsupervised data.

e Reinforcement learning is pretty different. Will come back to that later.



Unsupervised Learning

e Learning problems where an input/output relation was not provided.
o Often not a specific function to learn.
e General task is “learn the distribution”.

o Calculate mean and standard deviation technically qualifies.
o But usually we want something that can match the distribution a lot better.



Unsupervised Learning — Supervised Learning?

Previously saw next token prediction with LLMs

e \Was this supervised or unsupervised?



Unsupervised Learning — Supervised Learning?

Previously saw next token prediction with LLMs

e \Was this supervised or unsupervised?

o Unsupervised data set - lots of text.
o Extracted lots of supervised problems - pieces of text and next tokens.
o Fine tuning GPT 4 — ChatGPT has more explicit supervision.

Generation by discriminating what to generate next &



Supervised vs. Self/lUnsupervised Learning

Supervised Learning Self/Unsupervised Learning

Data: (x,y) Data: x

x is data, y is a label éc is data, no labels! Or labels part of the
ata

Goal: Learn function to map
x>y Goal: Learn the hidden or underlying
structure of the data.

Agplications: Classification, regression, . .. . . . )
object detection, semantic A?Ilcatlons: Clustering, dimensionality
segmentation, etc. reduction, compression, find outliers,

generating new examples, denoising,
Interpolating between data points, etc.

Related split: did humans decide the labels or targets?

© Alexander Amini and Ava Amini, MIT 6.5191: Introduction to Deep Learning, IntroToDeepLearning.com



Latent Variables

e \What is a latent variable?
o Invisible but underlying truth behind what’s going on?

e Latent variable — observations? Will be saying observation
o  Often lower dimension than our observations. a lot today to distinguish
o Observation ~ f(latent) “visible” data from inferred

o But not always

e Observation — latent variable?

o K-means mapping data to cluster id
o  Often will want to infer latents from observations (like inverting GAN)

latents.



Generative Models

If you have

1. Probability distribution of latent variables
2. Function mapping latent variables to observations

You basically have a generative model.



Generative Modeling

Goal: Take as input training samples from some distribution and
learn a model that represents that distribution

Probability Density Estimation Sample Generations

M .
K -
3
i — ‘
L ‘ ‘.‘

(]
samples ® Input samples Generated samples

Training data ~ Pyqea (X) Generated ~ Ppodet (X)
How can we learn Py, 4e; (%) similar to P,geq(x)?

© Alexander Amini and Ava Amini, MIT 6.5191: Introduction to Deep Learning, IntroToDeepLearning.com



Why generative models? Debiasing

Capable of uncovering underlying features in a dataset

Homogeneous skin color, pose Diverse skin color, pose, iligmination

How can we use this information to create fair and representative datasets?

Amini et al, “Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure,” 2019

© Alexander Amini and Ava Amini, MIT 6.5191: Introduction to Deep Learning, IntroToDeepLearning.com



Why generative models? Outlier detection

* Problem: How can we detect when 95% of Driving Data:
(1) sunny, (2) highway, (3 straight road

we encounter something new or rare?
» Strategy: Leverage generative models, Py A . i L‘
detect outliers in the distribution ~— —— EEEEEEEEE e —
* Use outliers during training to ]
improve even more!

Detect outliers to avoid unpredictable behavior when training

-
[/
<
.

Edge Cases Harsh Weather Pedestrians

A. Amini et al, “Variational Autoencoder for End-to-End Control of Autonomous Driving with Novelty Detection and Training De-biasing,” 2018
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More outlier examples

o Matroid

Scaled Machine Learning Conference

Al for Full-Self Driving

ANDREJ KARPATHY

Sr. Director of Artificial Intelligence - Tesla

YouTube Video, Feb. 2020 -- https://www.youtube.com/watch?v=hx7BXih7zx8&t=514s


https://www.youtube.com/watch?v=hx7BXih7zx8&t=514s

Style: pop upbeat

Why generative models?
image, video and audio creation

[Verse]

We're young dreamers with a heart so full

Ready to learn, ready to break the mold (the mold)
Neural networks, we're obsessed from the start

We'll conquer the world, we're gonna make our mark (ooh-
yeah)

[Chorus]

We're wired for success, ready to fly (ready to fly)

A generation united, reaching for the sky (reaching high)
Neural networks, our minds will ignite (ignite)

We'll change the world with all our might (ooh-yeah; all
right)

A teenage superhero fighting crime in an urban Write a short pop song about

setting shown in the style of claymation. students wanting to learn about
neural networks and do great

things with them.



Fitting generative adversarial networks




/ Unsupervised learning

/~ Latent variable \

models

\

/ Generative models

Generative = can generate
new examples

Probabilistic = can assign
probability to data examples



Probabilistic Generative Models

Key distinction Can’t you get this from the latent
probabilities and latent to

e (Can assign probability to observations observation mapping?

(conditioned on model parameters)
Not always easy to invert...

Standard optimization:

e Maximize probability of observations
e Requires direct calculation of observation probability from model parameters?
e Implicitly suppresses dissimilar possibilities...



Fitting generative adversarial networks




Probabilistic Generative Models

Since we can calculate probabilities for observations,

o We can compare different models
o  Which model makes the test data more likely?

e We can quantify how unlikely an observation is...
o Sois it an outlier?



Examples of Probabilistic Generative Models

e Normalizing flows (next week)
e \Variational autoencoders
e Diffusion models (next week)



Probabilistic models

* Maximize log likelihood of training data

— I -
¢ = argmax z log[Pr(x;| ¢)
R -

* Find the parameters, ¢, of some parametric probability distribution
so that the training data is most likely under that distribution



What makes a good model?

o Efficient sampling:

o Generating samples from the model should be computationally inexpensive and take
advantage of the parallelism of modern hardware.



What makes a good model?

o High-quality sampling:
o The samples should be indistinguishable from the real data that the model was trained with.

o This is broadly getting better as we train bigger models.



What makes a good model?

o Coverage:

o Samples should represent the entire training distribution. It is insufficient to only generate
samples that all look like a subset of the training data.

o GANSs have trouble with this since their generator training does not directly see the training
data...



What makes a good model?

o Well-behaved latent space:

o Every latent variable z should correspond to a plausible data example x and smooth
changes in z should correspond to smooth changes in x.

o Usually this is the case. Just ignore the 6 fingered hands?



What makes a good model?

e Interpretable latent space:

o Manipulating each dimension of z should correspond to changing an interpretable property
of the data. For example, in a model of language, it might change the topic, tense or degree
of verbosity.

This is stronger than having a well-behaved latent
space, since changes in a particular direction need
to be semantically similar.



What makes a good model?

o Efficient likelihood computation:

o If the model is probabilistic, we would like to be able to calculate the probability of new
examples efficiently and accurately.

WTB: a probability calculator
that identifies fake news as
low probability.



Do we have good models?

GANs | VAEs | Flows | Diffusion
Efficient sampling v v v X
High quality v X X v
Coverage X s ? ?
Well-behaved latent space v v v X
Interpretable latent space ¢ ? 7 X
Efficient likelihood n/a X v X

How to measure performance within or between categories?

* Open research area.




Quantifying Performance - Test Likelihood

How likely is the the test data given our model? (Throwback to loss functions)
I
E log[Pr(x;| ¢)
=1

See also perplexity if working with text.



Quantifying
Performance -

Inceptlon Score a) classify b) classify
Grading via another model D=l_
. classify classify
e  Usually the Inception model for ‘ —
ImageNet average
e \Want generated images to have classify sty
a single very likely _LD
classification.
e But average flat classification classify | classify
across generated images. |
° Formal formula checking Generated images Classification Generated images Marginal class distribution
KL-divergence between those {xi} Pr(yi|x;) {xi} Pr(y) = 3 i, Pr(uilx})
on a per-generated image
basis. .. Figure 14.4 Inception score. a) A pretrained network classifies the generated

images. If the images are realistic, the resulting class probabilities Pr(y;|x;)
should be peaked at the correct class. b) If the model generates all classes equally
frequently, the marginal (average) class probabilities should be flat. The inception
score measures the average distance between the distributions in (a) and the
distribution in (b). Images from Deng et al. (2009).



Quantifying Performance - Frechet Inception Distance

Another visual similarity metric based on Inception model (others can be used).

e Map generated images to distribution of Inception features.
e Model the distribution of Inception features as a multivariate normal
distribution.

e Compare two such distributions with the Wasserstein distance (metric)
o Also called “earth mover’s distance”
o Smaller is better.
o Closed form solution from multivariate normal assumption.



General Idea of GANs

® Don't try to build a probability model directly

® L_earn a transformation from a sample of noise to
look similar to training data\distribution

Generato

noise

r

Left GANs vulnerable to mode collapse
where only some of the distribution is
replicated.

© Alexander Amini and Ava Amini, MIT 6.5191: Introduction to Deep Learning, IntroToDeepLearning.com



Latent variable models

Normal Latent Model Model output  Real world output
distribution variables [110]
109
[_n &7 110
0.5 108
0! 109
> |12 - — |10
~0.6
‘ 110
Deep learning 110
i ) model 109

34

Latent variable models map a random “latent” variable to create a new data
sample



Latent Variable Models

Generative Adversarial Networks

r

Autoencoders and
Variational Autoencoders
(VAEs)

X bl Decoder I

© Alexander Amini and Ava Amini, MIT 6.5191: Introduction to Deep Learning, IntroToDeepLearning.com
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Latent Variable Models

Informally speaking, different levels of latent variables...
o Latent variable directly determines observations
o e.g.x=f1(z)
o Latent variable determines distribution of observations
o e.g.x~ Norm[f_mu(z), f_sigma2(z)]
o These levels aren’t really different -

o An extremely tight distribution ~ a fixed prediction

o Afixed prediction + noise ~ a distribution



Variational Autoencoders (VAES)

Goal is to learn the probability distribution from observed data

Can sample the distribution, but not evaluate probabilities exactly.



Variational Autoencoder

\ A )
Y Y

Variational Inference: A method from machine Autoencoder: A type of artificial neural network
learning that approximates probability densities used to learn efficient codings of unlabeled data
through optimization. in an unsupervised manner.

VAE is an autoencoder whose encodings distribution is
regularized during the training to ensure that its latent
space has good properties allowing us to generate new
data.

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Auto-Encodmg Variational Bayes

\ )\ y }\_Y_I

Autoencoder: A type of art|f|C|aI neural
network used to learn efficient codings of
unlabeled data in an unsupervised
manner.

Variational Inference: A method from
machine learning that approximates
probability densities through optimization.

Bayesian since joint density is decomposed into

prior and posterior density distributions using
Bayes Rule:

p(z,x) = p(x|z) p(z)



Outline

® Autoencoder and its limitations
® |ntuition behind VAEs
® Derivation of VAE

® Example applications



Dimensionality reduction with an

autoencoder

encoder decoder

@ d

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019

d(e(x))

encoded-decoded data
back in the initial space R

x = d(e(x))

x # d(e(x))

R’

&

lossless encoding

no information is lost
when reducing the
number of dimensions

lossy encoding

some information is lost
when reducing the
number of dimensions and
can't be recovered later


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Dimensionality reduction with an
autoencoder

encoder decoder | |

@ d |[—

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019

We want to find the best encoder, e, and
decoder, d, to minimize the error between x

and d(e(x)).

(e*,d*) = argmin e(x,d(e(x)))
(e,d)EEXD

where

e(x,d(e(x)))

is the reconstruction error.


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Dimensionality reduction with
Principal Component Analysis (PCA)

encoded dimension 1
ng=2n,=1

Point Initial Encoded Decoded
A (-0.50,-0.40) -0.63 (-0.54,-0.33)
B
€ (0.10, 0.00) 0.09 (0.07 0.04)
D (0.30,0.30) 0.41 (0.35,0.21)
E (0.50,0.20) 0.53 (0.46,0.27)
+ initial @® encoded (projection) e information lost Project the nd—dimensional features onto an

orthogonal n.-dimensional subspace that minimizes
Euclidean distance.

Linear Transformation!!

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Neural Network Autoencoder — 1 Linear Layer

We could define encoder and decoder to each
e have one linear layer (no activation function),
but it wouldn’t necessarily converge during
training to PCA solution.

neural network
encoder

neural network
decoder

initial dim 3
best linear subspac v’
e \
I | I ') ° L% o
I . » -.
I — ..

! .
/ l $ initial dim 1 : " \ \ 3 ¢

initial dim 2

E Can
€n
dup With ap,
asjs

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Neural Network Autoencoder

5

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019

N neural network neural network -

‘ % encoder decoder A

v :

4 “ ,J -
L loss = [[x-%[F = [[x-d@)|F = ||x-d(e())|}F a—T


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Autoencoder Reconstruction

Input < O L= Zl’(-". =R, e > Reconstructed

Encoder =i = Decoder

Trained on CelebA dataset.

Kana, "Variational Autoencoders (VAEs) for Dummies -- Step by Step Tutorial"
2020


https://towardsdatascience.com/variational-autoencoders-vaes-for-dummies-step-by-step-tutorial-69e6d1c9d8e9
https://towardsdatascience.com/variational-autoencoders-vaes-for-dummies-step-by-step-tutorial-69e6d1c9d8e9

Can we generate new samples with
autoencoder?

Train encoder and decoder as autoencoder.

training
process

Randomly select a different point in the latent
space.

Provide as input to the decoder to generate an
output.

eneration
gvomss sampler E decoded content
(reconstructed input

generated content)

sampled vector
(from latent space)

Will this produce a good quality output?
Why?

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Extreme case: Memorization

encoder decoder
6] ‘\
point sampled from the

latent space for new
content generation

“training” data
for the
autoencoder

Encoder and decoder are so powerful that they can fully
memorize the data.

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019

Perfectly decoded
samples.

O

without regularization
the decoded output can
be meaningless


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Outline

® Autoencoder and its limitations
® |ntuition behind VAEs
® Derivation of VAE

® Example applications



Variational Autoencoder...

...is an autoencoder whose training is regularized to avoid overfitting and
ensure that the latent space has good properties that enable generative
process.

Instead of encoding as a single point, encode it as a distribution over the
latent space.

Assume distributions are normal.

latent input
. input representation reconstruction
simple
autoencoders X z=e(x) d(z)
latent sampled latent input
5 o0 input distribution representation reconstruction
variational
autoencoders X p(z|x) z~p(z|x) d(z)

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Variational Autoencoder

neural network neural network —
encoder decoder b ]
X =d(z)
loss = ||x-x]|]? + KL SN, )] = || x-d(2)|]? + KL ,N©O, )]

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Variational Autoencoder

neural network
decoder

neural network

encoder

\ )
Y

Encoder is emitting u, vector

and o, diagonal vector for

independent gaussians

densities.

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Variational Autoencoder

neural network neural network

encoder decoder

K

X=d(z)

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Variational Autoencoder

neural network
decoder

neural network

encoder

Then input z to the decoder
network to produce output.

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Variational Autoencoder

neural network

encoder

neural network
decoder

loss = || x-x]|]? + KL ,NO,1)1 = || x-d(2) || + KL
\ ] \ )
Y Y
L2 Loss Kulback-Leibler divergence

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019

+N(O, )]

The loss is now the L2 loss as
with the autoencoder, but with
an additional KL-divergence
term as regularizer.


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Intuitions about Regularization

| Point jn the latent A
SPace that prodyc
Meaning|ess ©
decodeq outpyt
points that aré /
close in latent .
space but PVOdUCZ "\@ @
dissimilar decode
outputs points that are close in latent
O space produce similar decoded
outputs
irregular latent space x V regular latent space

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Encoding to Normal distributions is not enough

without regularization x V with regularization

We have to regularize the means and the covariances too!
Regularize to a standard normal.

m) loss = || x-x|]? + KLI ,N(0, 1) ]

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Benefit of regularization

The continuity and completeness
obtained from regularization
tends to create a “gradient” over
the information encoded in latent
space.

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73




Outline

® Autoencoder and its limitations
® |ntuition behind VAEs
® Derivation of VAE

® Example applications



Preliminaries: Bayesian Models

p(2)

p(x|z)

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019

prior — prior knowledge or
belief about z

likelihood — probability
of a sample given z


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Bayesian Inference

neural network neural network

encoder decoder

X =d(z)

Probabilistic Encoder Probabilistic Decoder
p(z|x) p(x|z)

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

neural network

encoder

Probabilistic Encoder
p(z|x)

H_J
posterior — update our
knowledge of z given a
new sample

Bayesian Inference

neural network
decoder p (Z | x) -

We can relate the posterior
to the likelihood via
Bayes Theorem.

X =d(z)

Probabilistic Decoder
p(x|z)
——

likelihood — probability of
a sample given z

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

neural network

encoder

Probabilistic Encoder
p(z|x)
H_J
posterior — update our
knowledge of z given a
new sample

Bayesian Inference

prior — prior knowledge
iikelihood " belief about z

neural network 1
decoder o p(Zl ) —

=1 posterior Y

evidence — probability

x=d(z) distribution of our observed
Probabilistic Decoder data
p(x|z)
—

likelihood — probability of
a sample given z

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

neural network

encoder

Probabilistic Encoder
p(z|x)

H_J
posterior — update our
knowledge of z given a
new sample

Bayesian Inference

prior — prior knowledge
iikelihood " belief about z

neural network
decoder p (Z | x) -
posterior

N\
X =d(z)

Probabilistic Decoder
p(x|z)
——

likelihood — probability of
a sample given z

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019

_ (2w
[ p@lzp(2)dz

We can’t calculate the
integral directly, but we can
approximate it using
variational inference



https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

neural network

encoder

Probabilistic Encoder
p(z|x)
——

posterior

Simplifying Assumptions

neural network

decoder

Probabilistic Decoder
p(x|z)
——
likelihood

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019

Assume that the prior is a standard
Gaussian

p(z) =N(0,])
And likelihood is a Gaussian
p(x|z) = N (f(2),cl)

where f € F is a family of functions we
will specify later and ¢ > 0.


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Variational Inference Formulation

neural network

encoder

Probabilistic Encoder Probabilistic Decoder
p(z|x) p(x|z)
—— ——
posterior likelihood

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019

neural network

decoder

We are going to approximate posterior
to parameterized set of Gaussians.

Approximate p(z|x) by a Gaussian
qx(2).

4x(z) = N (g(x), h(x))

where g € G and h € H are a family of
functions we will define shortly.


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

qx(z) = N (g(x), h(x))

Variational Inference

(g%,h*) = argmin KL(g.(2),p(z|r))
(g,h)EGXH

We want to find the best functions, gand 4, to minimize the KL-
divergence from the posterior p(z|x).

C.5.1 Kaullback-Leibler divergence

The most common measure of distance between probability distributions p(z) and ¢(z)
is the Kullback-Leibler or KL divergence and is defined as:

Dict [o)o(w)] = [ pta)tog |23 | de (C.28)



Variational Inference

(9", h") = argmin KL(qz(2),p(2|z))

(9,h)EGXH
_ . p(z|z)p(z)
= argmin (E,., (logg:(2)) — E ng, | log ——F——
(9,R)EGXH p(z)

[0 Rewriting KL divergence as Expectation,
[ log of division is difference of the logs
[0 substituting for the posterior using Bayes Theorem

4x(2) = N (g(x), h(x))



qx(z) = N (g(x), h(x))

Variational Inference

(g%,h") = argmin KL(gz(2),p(2|r))

(g,h)EGxH

_ . p(z|2)p(2)

= argmin |E,., (logg.(2)) —E,~q, | log
(9,R)EGXH p(z)

= argmin (E..q, (108 ¢z(2)) — Ezng, (logp(2)) — Ezng, (log p(2|2)) + Eznyg, (logp(2)))
(9,h)EGXH

0 log of product becomes sum of logs
0 log of division becomes difference of logs



qx(z) = N (g(x), h(x))

Variational Inference

(g%,h*) = argmin KL(g.(z),p(z|r))
(g,h)EGXH

— argmin (Ezwqm (log gz(2)) — Ezng, <1°g M»

(9,h)EGXH p(z)

= argmin (E,.q, (loggz(2)) — Ezng, (logp(2)) — Ezng, (log p(z|2)) + Ezng, (log p(z)))
(9,h)EGXH

= argmax (E.q, (logp(z|z)) — K L(g2(2),p(2)))
(9,h)EGXH

[0 negating and converting from argmin to argmax
[0 collecting terms to form KL divergence



qx(z) = N (g(x), h(x))

Variational Inference

(¢",h") = argmin KL(qz(2),p(2|z))

(g,h)EGXH
= argmin (]E,,,\,qac (logg:(2)) —E;ng, (log ZM))
(9,h)EGXH p(z)
= argmin (E,.q, (logg:(2)) — E;ng, (logp(2)) — E.ng, (logp(z|2)) + Ezng, (log p(z)))
(9,h)EGXH
= argmax (E..q, (logp(z|2)) — KL(g2(2), p(2)))
(9,h)EGXH
\ ) \
Y Y
Maximize the expected log Minimize the difference
likelihood. between the approximate

posterior and the prior.



4x(2) = N (g(x), h(x))

Variational Inference

(¢",h") = argmin KL(qz(2),p(2|z))

(9,h)EGXH
B e Tl p(z|2)p(2)
= argmin 2rigs (108 @2(2)) — Eznyg, | log —————
(9,h)EGxH p(z)
= argmin (IEqum (log q.(2)) — E,vq, (logp(z)) — Ezng, (log p(z|2)) + Ezng, (logp(z)))
(9,h)EGXH
= argmax (E..q, (logp(z|z)) — K L(gz(2),p(2)))
(9,h)EGXH
z — f(2)]|[?
= argmax (Eong, (~1=JON0) - K1) 0020 )
(9,h)EGxH c
\ J)
Y

Log of the Gaussian likelihood p(x|z) = N (f (2), cI).

This brings our function, f, into the equation, so...



qx(2) = N (g(x), h(x))

Variational Inference

We are looking for optimal f* g*and h*such that

gy = agmax (B, (-I2SO0) - k10,0),5000)

(f,g,h)EFXGxH

Note that the constant, ¢, determines the balance between
reconstruction error and the regularization term given by KL
divergence.



Enter the Neural Networks

a,=h(x) = h,(h,(x)

Encoder produces the mean Decoder reconstructs the input
and variance. (during training)



But one more problem to solve

6,=h(x) = h,(h, (x))

76

We can’t backpropagate through the sampling step.



Use the reparameterization trick
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Putting it all together

N(o, I) —

] ]
18-
4 —> f ]

o, =h(x) x = f(2)

loss = C||

-X|* + KL[N(u ,0),N(0,)] = C||x-f(z)|]* + KLIN(g(x), h(x)), N(0, )]

We have as trainable neural network!

We use a Monte-Carlo
approximation to the
expectation of
reconstruction loss

Convert C = 1/(2c).



Probability Distribution Divergence Measures

C.5.1 Kullback-Leibler divergence

The most common measure of distance between probability distributions p(z) and g(x)
is the Kullback-Leibler or KL divergence and is defined as:

Dicw [p@)a(w)] = [ pley1og | 23] . (C.28)

C.5.2 Jensen-Shannon divergence

The KL divergence is not symmetric (i.e., Dgr[p(z)|lq(x)]# Dkrlq(x)||p(x)]). The
Jensen-Shannon divergence is a measure of distance that is symmetric by construction:

Das[p@o@)] = 3P o) P42 1 2o o] P22 o0

It is the mean divergence of p(x) and ¢(z) to the average of the two distributions.

Prince, Understanding Deep Learning






Outline

® Autoencoder and its limitations
® |ntuition behind VAEs
® Derivation of VAE

® Example applications



Generating high quality images

Vahdat & Kautz (2020) “NVAE: A deep hierarchical variational autoencoder”



Resynthesizing real data with changes

Smiling

%
=3
&

usdo yinojy

Figure 17.13 Resynthesis. The original image on the left is projected into the la-
tent space using the encoder, and the mean of the predicted Gaussian is chosen to
represent the image. The center-left image in the grid is the reconstruction of the
input. The other images are reconstructions after manipulating the latent space
in directions representing smiling/neutral (horizontal) and mouth open/closed
(vertical). Adapted from White (2016).



Disentanglement of the latent space

a) Rotation b) Size c) Legs
s 4 & & LB B B ? * % & B B
d 4 &% B K| % & R ¥ KM B R
A & m k| |momm T " momom
{ 2 ¥ % % |o # 4 X 1 ¢ v
d & m % § d d 4 {f o d A 4

Chen et al (2021) “Cross-layer distillation with semantic calibration.”
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(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
po(x|z) with the learned parameters 6.

Kingma and Welling, “Auto-Encoding Variational Bayes.”, 2013.
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Conditional VAEs

Example from

https://towardsdatascience.com/variational-autoencoders-vaes-fo

r-dummies-step-by-step-tutorial-69e6d1c9d8e9



https://towardsdatascience.com/variational-autoencoders-vaes-for-dummies-step-by-step-tutorial-69e6d1c9d8e9
https://towardsdatascience.com/variational-autoencoders-vaes-for-dummies-step-by-step-tutorial-69e6d1c9d8e9

Debiasing

Capable of uncovering underlying features in a dataset

Homogeneous skin color, pose Diverse skin color, pose, illumination

How can we use this information to create fair and representative datasets?

Amini et al, “Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure,” 2019

© Alexander Amini and Ava Amini, MIT 6.5191: Introduction to Deep Learning, IntroToDeepLearning.com



Outlier Detection

* Problem: How can we detect when 95% of Driving Data:
(1) sunny, (2) highway, (3) straight road

we encounter something new or rare?
* Strategy: Leverage generative models, Lt . | L‘
detect outliers in the distribution =~ —— [FREEEEE=E " = re—
* Use outliers during training to ]
improve even more!

Edge Cases Harsh Weather Pedestrians

A. Amini et al, “Variational Autoencoder for End-to-End Control of Autonomous Driving with Novelty Detection and Training De-biasing,” 2018

© Alexander Amini and Ava Amini, MIT 6.5191: Introduction to Deep Learning, IntroToDeepLearning.com



Next Week

e Normalizing Flows (easy inversion / probabilities)
e Diffusion Models (high quality / fast / easy to steer)



Feedback?




