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Last Time

● Adversarial Inputs
● Generative Adversarial Networks ← example of unsupervised learning



This Time

Unsupervised Learning

● Taxonomy
● Generative models
● Quantifying performance

Two new kinds of generative models

● Normalizing flows → next time
● Variational autoencoders



Supervised Learning

Any time that

● We are provided input/output pairs
● And asked to build a model generalizing them

Unsupervised learning

● Everything else? Not quite.
● Self/semi-supervised learning used inconsistently.

○ Sometimes partially supervised.
○ Sometimes deriving targets for unsupervised data.

● Reinforcement learning is pretty different. Will come back to that later.



Unsupervised Learning

● Learning problems where an input/output relation was not provided.
○ Often not a specific function to learn.

● General task is “learn the distribution”.
○ Calculate mean and standard deviation technically qualifies.
○ But usually we want something that can match the distribution a lot better.



Unsupervised Learning → Supervised Learning?

Previously saw next token prediction with LLMs

● Was this supervised or unsupervised?



Unsupervised Learning → Supervised Learning?

Previously saw next token prediction with LLMs

● Was this supervised or unsupervised?
○ Unsupervised data set - lots of text.
○ Extracted lots of supervised problems - pieces of text and next tokens.
○ Fine tuning GPT 4 → ChatGPT has more explicit supervision.

Generation by discriminating what to generate next 🤔



Supervised vs. Self/Unsupervised Learning
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Related split: did humans decide the labels or targets?



Latent Variables

● What is a latent variable?
○ Invisible but underlying truth behind what’s going on?

● Latent variable → observations?
○ Often lower dimension than our observations.
○ Observation ~ f(latent)
○ But not always

● Observation → latent variable?
○ K-means mapping data to cluster id
○ Often will want to infer latents from observations (like inverting GAN)

Will be saying observation 
a lot today to distinguish 
“visible” data from inferred 
latents.



Generative Models

If you have

1. Probability distribution of latent variables
2. Function mapping latent variables to observations

You basically have a generative model.



Generative Modeling
Goal: Take as input training samples from some distribution and 

learn a model that represents that distribution

Probability Density Estimation Sample Generations
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Amini et al, “Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure,” 2019
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A. Amini et al, “Variational Autoencoder for End-to-End Control of Autonomous Driving with Novelty Detection and Training De-biasing,” 2018
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More outlier examples

YouTube Video, Feb. 2020 -- https://www.youtube.com/watch?v=hx7BXih7zx8&t=514s 
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https://www.youtube.com/watch?v=hx7BXih7zx8&t=514s


Why generative models? 
image, video and audio creation

Write a short pop song about 
students wanting to learn about 
neural networks and do great 
things with them.

A teenage superhero fighting crime in an urban 
setting shown in the style of claymation.
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Generative = can generate 
new examples

Probabilistic = can assign 
probability to data examples



Probabilistic Generative Models

Key distinction

● Can assign probability to observations
(conditioned on model parameters)

Standard optimization:

● Maximize probability of observations
● Requires direct calculation of observation probability from model parameters?
● Implicitly suppresses dissimilar possibilities…

Can’t you get this from the latent 
probabilities and latent to 
observation mapping?

Not always easy to invert...
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Probabilistic Generative Models

Since we can calculate probabilities for observations,

● We can compare different models
○ Which model makes the test data more likely?

● We can quantify how unlikely an observation is…
○ So is it an outlier?



Examples of Probabilistic Generative Models

● Normalizing flows (next week)
● Variational autoencoders
● Diffusion models (next week)



Probabilistic models
 



What makes a good model?

● Efficient sampling:
○ Generating samples from the model should be computationally inexpensive and take 

advantage of the parallelism of modern hardware.



What makes a good model?

● High-quality sampling:
○ The samples should be indistinguishable from the real data that the model was trained with.

○ This is broadly getting better as we train bigger models.



What makes a good model?

● Coverage:
○ Samples should represent the entire training distribution. It is insufficient to only generate 

samples that all look like a subset of the training data.

○ GANs have trouble with this since their generator training does not directly see the training 
data…



What makes a good model?

● Well-behaved latent space:
○ Every latent variable z should correspond to a plausible data example x and smooth 

changes in z should correspond to smooth changes in x.

○ Usually this is the case. Just ignore the 6 fingered hands?



What makes a good model?

● Interpretable latent space:
○ Manipulating each dimension of z should correspond to changing an interpretable property 

of the data. For example, in a model of language, it might change the topic, tense or degree 
of verbosity.

This is stronger than having a well-behaved latent 
space, since changes in a particular direction need 
to be semantically similar.



What makes a good model?

● Efficient likelihood computation:
○ If the model is probabilistic, we would like to be able to calculate the probability of new 

examples efficiently and accurately.

WTB: a probability calculator 
that identifies fake news as 
low probability.



Do we have good models?

How to measure performance within or between categories?  
• Open research area.  



Quantifying Performance - Test Likelihood

How likely is the the test data given our model? (Throwback to loss functions)

See also perplexity if working with text.



Quantifying 
Performance - 
Inception Score

Grading via another model

● Usually the Inception model for 
ImageNet

● Want generated images to have 
a single very likely 
classification.

● But average flat classification 
across generated images.

● Formal formula checking 
KL-divergence between those 
on a per-generated image 
basis…



Quantifying Performance - Fréchet Inception Distance

Another visual similarity metric based on Inception model (others can be used).

● Map generated images to distribution of Inception features.
● Model the distribution of Inception features as a multivariate normal 

distribution.
● Compare two such distributions with the Wasserstein distance (metric)

○ Also called “earth mover’s distance”
○ Smaller is better.
○ Closed form solution from multivariate normal assumption.



General Idea of GANs

● Don’t try to build a probability model directly

● Learn a transformation from a sample of noise to 
look similar to training data distribution

Generato
r

 

 

noise
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Left GANs vulnerable to mode collapse 
where only some of the distribution is 
replicated.



Latent variable models

Latent variable models map a random “latent” variable to create a new data 
sample
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Encoder Decoder
 

  

Latent Variable Models

Discriminato
r

Generato
r

Autoencoders and 
Variational Autoencoders 

(VAEs)

Generative Adversarial Networks
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Latent Variable Models

Informally speaking, different levels of latent variables…

● Latent variable directly determines observations
○ e.g. x = f(z)

● Latent variable determines distribution of observations
○ e.g. x ~ Norm[f_mu(z), f_sigma2(z)]

● These levels aren’t really different -
○ An extremely tight distribution ~ a fixed prediction

○ A fixed prediction + noise ~ a distribution



Variational Autoencoders (VAEs)

Goal is to learn the probability distribution from observed data

Can sample the distribution, but not evaluate probabilities exactly.



                       Variational Autoencoder

Variational Inference:  A method from machine 
learning that approximates probability densities 
through optimization.

Autoencoder:  A type of artificial neural network 
used to learn efficient codings of unlabeled data 
in an unsupervised manner.

VAE is an autoencoder whose encodings distribution is 
regularized during the training to ensure that its latent 
space has good properties allowing us to generate new 
data.

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Variational Inference:  A method from 
machine learning that approximates 
probability densities through optimization.

Autoencoder:  A type of artificial neural 
network used to learn efficient codings of 
unlabeled data in an unsupervised 
manner.

 



Outline

● Autoencoder and its limitations

● Intuition behind VAEs

● Derivation of VAE

● Example applications



Dimensionality reduction with an 
autoencoder

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Dimensionality reduction with an 
autoencoder

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

 

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Dimensionality reduction with 
Principal Component Analysis (PCA)

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

 

 

Linear Transformation!!

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Neural Network Autoencoder – 1 Linear Layer

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

We could define encoder and decoder to each 
have one linear layer (no activation function), 
but it wouldn’t necessarily converge during 
training to PCA solution.

best linear subspace

AE can end up with any basis

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Neural Network Autoencoder

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Autoencoder Reconstruction

Kana, "Variational Autoencoders (VAEs) for Dummies -- Step by Step Tutorial", 
2020 

Trained on CelebA dataset.

https://towardsdatascience.com/variational-autoencoders-vaes-for-dummies-step-by-step-tutorial-69e6d1c9d8e9
https://towardsdatascience.com/variational-autoencoders-vaes-for-dummies-step-by-step-tutorial-69e6d1c9d8e9


Can we generate new samples with 
autoencoder?

Train encoder and decoder as autoencoder.

Randomly select a different point in the latent 
space.

Provide as input to the decoder to generate an 
output.

Will this produce a good quality output? 
Why?

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Extreme case: Memorization

Encoder and decoder are so powerful that they can fully 
memorize the data. 

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

“training” data 
for the 
autoencoder

point sampled from the 
latent space for new 
content generation

Perfectly decoded 
samples.

without regularization 
the decoded output can 
be meaningless

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Outline

● Autoencoder and its limitations

● Intuition behind VAEs

● Derivation of VAE

● Example applications



Variational Autoencoder…
…is an autoencoder whose training is regularized to avoid overfitting and 
ensure that the latent space has good properties that enable generative 
process.

Instead of encoding as a single point, encode it as a distribution over the 
latent space.

Assume distributions are normal.

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Variational Autoencoder

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Variational Autoencoder

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

 

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Variational Autoencoder

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

We then sample z from the 
multivariate Normal.

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Variational Autoencoder

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

Then input z to the decoder 
network to produce output.

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Variational Autoencoder

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

Kulback-Leibler divergenceL2 Loss

The loss is now the L2 loss as 
with the autoencoder, but with 
an additional KL-divergence 
term as regularizer.

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Intuitions about Regularization

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

irregular latent space regular latent space

points that are 

close in latent 

space but produce 

dissimilar decoded 

outputs

point in the latent space that produce meaningless decoded output

points that are close in latent 
space produce similar decoded 
outputs

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Encoding to Normal distributions is not enough

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

without regularization with regularization

We have to regularize the means and the covariances too!
Regularize to a standard normal.

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Benefit of regularization

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

The continuity and completeness 
obtained from regularization 
tends to create a “gradient” over 
the information encoded in latent 
space.

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Dall-E 3
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Outline

● Autoencoder and its limitations

● Intuition behind VAEs

● Derivation of VAE

● Example applications



Preliminaries: Bayesian Models

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

N

z

x

 

 

prior – prior knowledge or 
belief about z

likelihood – probability 
of a sample given z

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Bayesian Inference

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

z

  

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Bayesian Inference

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

z

  

 

likelihood – probability of 
a sample given z

posterior – update our 
knowledge of z given a 
new sample

We can relate the posterior 
to the likelihood via
Bayes Theorem.

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Bayesian Inference

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

z

  

 

likelihood – probability of 
a sample given z

prior – prior knowledge 
or belief about z

posterior – update our 
knowledge of z given a 
new sample

evidence – probability 
distribution of our observed 
data

likelihood

posterior

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Bayesian Inference

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

z

  

 

likelihood – probability of 
a sample given z

prior – prior knowledge 
or belief about z

posterior – update our 
knowledge of z given a 
new sample

 

likelihood

posterior

We can’t calculate the 
integral directly, but we can 
approximate it using 
variational inference

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Simplifying Assumptions

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

z

  

 

likelihoodposterior

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Variational Inference Formulation

Rocca, "Understanding Variational Autoencoders (VAEs)", 2019 

z

  

 

likelihoodposterior

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Variational Inference
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Variational Inference
 

� Rewriting KL divergence as Expectation,
� log of division is difference of the logs
� substituting for the posterior using Bayes Theorem



Variational Inference
 

� log of product becomes sum of logs
� log of division becomes difference of logs



� negating and converting from argmin to argmax
� collecting terms to form KL divergence

Variational Inference
 



Variational Inference
 

Maximize the expected log 
likelihood.

Minimize the difference 
between the approximate 
posterior and the prior.



Variational Inference
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Variational Inference
 

We are looking for optimal f*, g* and h* such that

Note that the constant, c, determines the balance between 
reconstruction error and the regularization term given by KL 
divergence.



Decoder reconstructs the input 
(during training)

Enter the Neural Networks

Encoder produces the mean 
and variance.



But one more problem to solve

76

We can’t backpropagate through the sampling step. 



Use the reparameterization trick



Putting it all together

78

We have as trainable neural network!

We use a Monte-Carlo 
approximation to the 
expectation of 
reconstruction loss

Convert C = 1/(2c).



Probability Distribution Divergence Measures

Prince, Understanding Deep Learning



Dall-E 3
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Outline

● Autoencoder and its limitations

● Intuition behind VAEs

● Derivation of VAE

● Example applications



Generating high quality images

Vahdat & Kautz (2020) “NVAE: A deep hierarchical variational autoencoder”



Resynthesizing real data with changes



Disentanglement of the latent space

84

Chen et al (2021) “Cross-layer distillation with semantic calibration.”



Kingma and Welling, “Auto-Encoding Variational Bayes.”, 2013.



Conditional VAEs

Example from 
https://towardsdatascience.com/variational-autoencoders-vaes-fo
r-dummies-step-by-step-tutorial-69e6d1c9d8e9 
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https://towardsdatascience.com/variational-autoencoders-vaes-for-dummies-step-by-step-tutorial-69e6d1c9d8e9
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Amini et al, “Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure,” 2019
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Debiasing



A. Amini et al, “Variational Autoencoder for End-to-End Control of Autonomous Driving with Novelty Detection and Training De-biasing,” 2018
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Outlier Detection



Next Week

● Normalizing Flows (easy inversion / probabilities)
● Diffusion Models (high quality / fast / easy to steer)



Feedback?


